1,679 research outputs found

    Investigation of conventional and Super-X divertor configurations of MAST Upgrade using SOLPS

    Full text link
    One of the first studies of MAST Upgrade divertor configurations with SOLPS5.0 are presented. We focus on understanding main prospects associated with the novel geometry of the Super-X divertor (SXD). This includes a discussion of the effect of magnetic flux expansion and volumetric power losses on the reduction of target power loads, the effect of divertor geometry on the divertor closure and distribution of neutral species and radiation in the divertor, the role of the connection length in broadening the target wetted area. A comparison in conditions typical for MAST inter-ELM H-mode plasmas confirms improved performance of the Super-X topology resulting in significantly better divertor closure with respect to neutrals (the atomic flux from the target increased by a factor of 6, but the atomic flux from the divertor to the upper SOL reduced by a factor of 2), increased radiation volume and increased total power loss (a factor of 2) and a reduction of target power loads through both magnetic flux expansion and larger volumetric power loss in the divertor (a factor of 5-10 in attached plasmas). The reduction of the target power load by SXD further increases with collisionality (high density or detached regimes) thanks to larger importance of volumetric power losses. It is found that a cold divertor plasma leads to stronger parallel temperature gradients in the SOL which drive more parallel heat flux, meaning that the effectiveness of perpendicular transport in spreading the power at the target can be reduced, and this needs to be taken into account in any optimisation.Comment: 32 pages, 23 figures. This is an author-created, un-copyedited version of an article accepted for publication in PPCF. IOP Publishing Ltd and IAEA are not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Benchmarking of a 1D Scrape-off layer code SOLF1D with SOLPS and its use in modelling long-legged divertors

    Full text link
    A 1D code modelling SOL transport parallel to the magnetic field (SOLF1D) is benchmarked with 2D simulations of MAST-U SOL performed via the SOLPS code for two different collisionalities. Based on this comparison, SOLF1D is then used to model the effects of divertor leg stretching in 1D, in support of the planned Super-X divertor on MAST. The aim is to separate magnetic flux expansion from volumetric power losses due to recycling neutrals by stretching the divertor leg either vertically or radially.Comment: 31 pages, 17 figures. This is an author-created, un-copyedited version of an article accepted for publication in Plasma Physics and Controlled Fusion. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    SOLPS-ITER modeling of ASDEX Upgrade L-mode detachment states

    Get PDF

    SOLPS-ITER modeling of ASDEX Upgrade L-mode detachment states

    Get PDF
    SOLPS-ITER is used to model ASDEX Upgrade L-mode detachment states including the onset of detachment, the fluctuating detachment, and the complete detachment states, considering drifts and mimicking filamentary convective transport with a radial outward velocity in the low field side. The effect of drifts, perpendicular outward convection and core boundary conditions on the numerical solution is presented. The modeling results are validated against experimental data. We find a good agreement of particle flux at the inner target between modeling results and experimental data. On the opposite, at the outer target computations underestimate measured particle flux by a factor of about 2 ∼ 3 in the onset of detachment and the fluctuating detachment states
    corecore